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Large-n Limit of the Heisenberg Model: 
Random External Field and Random 
Uniaxial Anisotropy 
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The thermodynamic equivalence of the large-n limit of the n-vector model in a 
random external field and the corresponding disordered spherical model is 
proved. An analytic expression for the free energy and a phase diagram of the 
large-n limit of the n-vector model with random uniaxial anisotropy are 
obtained by rigorous argument. The ferromagnetic order in the large-n limit is 
proved to be stable against the switching on of an arbitrarily small random 
anisotropy. 
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1. The study of the thermodynamics  of realistic spin models, as a rule, 
involves explicitly or  implicitly the analysis of an infinite system of 
transcendental  equations. In the ordered (translationally invariant) case, 
this system is reduced to a single equat ion if the number  of components  
of the spin vector n tends to infinity. (12) That  is why the thermodynamics  
of the limit model  has been investigated in detail. (~) 

One may expect that  in the disordered case there will be no significant 
simplification in the large-n limit. Indeed, according to ref. 4, in the absence 
of the translational invariance, the large-n limit of the n-vector model  
appears to be the generalized spherical model. To study its behavior, one 
is to consider a macroscopic  number  of parameters satisfying an infinite 
system of equations. This problem is almost  as complicated as the original 
one and its explicit solution is known only in the one-dimensional case. (5) 

Nevertheless, there exist rather interesting disordered models for which 
the problem of the study of the thermodynamics  in the large-n limit reduces 
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to the solution of a single equation. In the present paper we consider two 
models of this kind: 

(i) The classical n-vector ferromagnet in a random external field with 
the Hamiltonian 

1 
H n m - ~ 2 J r _ r ,  S r ' S r , - - 2 h r ' S r  (1) 

r, r '  r 

S t = (  s ...... Sr), ,.., (S~)2 = n; r, r s V c y - a  
c ~ = 1  

where the field components h~ are independent identically distributed 
random variables for all r e Z d, e = 1 ..... n. 

(ii) The classical n-vector ferromagnet with random anisotropy with 
the Hamiltonian 

1 1 
H,~=~ E Jr_,,Sr'S,,--n Z (I), 's ,)  2 (2) 

r, r ' r 

s , = ( s  ..... ,s ,) ,  ~ (s~)Z=n; r , r ' e  V c 2  a 
~ x ~ l  

n D ~ )2 where Dr are independent random vectors of a fixed length Z~= 1 ( , = n 
uniformly distributed over the respective sphere. 

The modern idea of the critical behavior of the models (i)-(ii) is to a 
considerable extent based on the results obtained by approximations that 
are difficult to control. (6-9) The only known rigorous results concern the 
Ising model in a random field (1~ and n-vector random-field model in 
dimensions d~<4. (m The lack of rigorous results has stimulated the study 
of the large-n limit of these models (12 15); however, this study used the 
replica trick as the main method. 

Here we present a rigorous study of the thermodynamics of the models 
(i)-(ii) in the large-n limit. In Section 2 the large-n limit of the free energy 
of the model (i) is found on the assumption of the existence of the fourth 
moment  of the external field. The answer involves only the first two 
moments of the field, does not depend on its distribution, and coincides 
with the free energy of the disordered spherical model in a random field. (16) 
The expression derived coincides also with that obtained in ref. 12 for the 
Gaussian random field by the replica trick. 

In Section 3 it will be proved that if a < ac, where 

 c=L f : -Ij2 
Eo, 2~1~ Y(0) - Y(p) 
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[ J (p )  is the Fourier transform of the interaction] depends only on the 
value of interaction and the dimension of the space, the large-n limit of the 
free energy of model (ii) coincides with that of the translationally invariant 
spherical model. (3) This means that if a < ac, the random anisotropy does 
not affect the thermodynamics of the model, in particular, ferromagnetic 
order occurs at low temperatures (see Fig. 1). Such n = oo behavior differs 
from that which is expected for the finite-n model (ii) (7-91 and that was 
found by the replica trick for the large-n limit of a field-theoretic counter- 
part of model (ii). (12-15) When a > a c the second derivative of the large-n 
limit of the free energy as a function of temperature has a jump at the point 
T =  Tc, where k T c = 2 a  2. This singularity corresponds to the phase 
transition P M - - , D  (see Figs. 1 and 2). In the phase D, the spins are 
frozen along the local anisotropy axes  D r. A similar transition with the same 
critical temperature exists in the model of noninteracting spins with the 
Hamiltonian H =  --Y~r~ Z ( D r "  St) 2 in the large-n limit. (17) In this case if n 
is finite, the PM ~ D phase transition disappears. It is natural to expect 
that there is no phase D for model (ii) when n < oo. 

k T  ~ 

kTo 

PM/ 
D 

FM 

Fig. 1. Phase diagram of the large-n limit of the model (ii) with short-range interaction 
[Y(O)-J(p)  ~ p2, p ~ 0]. The space dimension d>~ 3; To is the critical temperature in the 
translationally invariant case [a = 0]. 
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Fig. 2. 

kT 

0 
) 

0-2 

Phase diagram of the large-n limit of the model (ii) with short-range interaction 
[Y(0)- Y(p) ~ p2, p ~ 0]. The space dimension d= 1, 2. 

2. In this section we derive an expression for the large-n limit of the 
free energy 

1 f l l n f e x p ( - f i H ~ ) l ~ d S r  (3) f " v =  nIVl 

of model  (i). Denote  the average over  the realizations of the external field 
hr by E{. }. The following s ta tement  is the main  result of this section. 

T h e o r e m  1. Let us assume that  Z r ~ J r  and E{(h~) 4} are finite. 
Then, 

lim lim E{f , ,v} 
n ~ o o  [VI ~ oo 

= max  l n E z - J ( p ) ]  dp 1 dp 
z>J~o) Co,2,1d ( 2 ~ )  a -2 E o , 2 . ] d z _ y ( p )  (2x) d 

h 2 z 1 2= 
In 

2 [ z - J ( 0 ) ]  2 2fl fl 
(4) 
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where h and a2 are the mean value and the variance of the external field, 
respectively, h =  ~{h~}, a2=  E{(Ur-h)2}, and J(p) i s  the Fourier trans- 
form of the interaction. 

Remarks. 1. According to ref. 18, the free energy in the thermo- 
dynamic limit is self-averaging. This means that for almost all realizations 
of the external field 

lim f~,v = lim ~{f~,v} 
IvI ~ oo IVI ~ oo 

Therefore the average over the realizations of the field h r in the lhs of (4) 
may be omitted. 

2. The rhs of expression (4) coincides with the free energy of the 
spherical model in a random external field. (16) For definiteness, we confine 
ourselves to the short-range interaction [Y (O) -Y (p )~p  2, p ~ 0 ] .  The 
analysis of the rhs of (4) s h o w s  (16)  that in a space of dimension d = 3, 4, an 
arbitrarily small random field with a zero mean destroys the ferromagnetic 
order. If d>~ 5 and the fluctuations of the external field hr are not too large, 

1 dp -1/2 f o < {7 c 
J[0,2~z] d [7(0)- 7 ( p ) ]  2 (2x) a 

then it only suppresses, but does not destroy, the ferromagnetic order. 
Namely, at temperatures T <  Tc = To[1 - (~rfirc)2], where T O is the critical 
temperature of the translationally invariant spherical model, ~3) 

If , 11  kT~ = Eo,2.~Y(O)-Y(p) (2~)aJ (5) 

the spontaneous magnetization is nonzero and is I(T c -  T)/Tol 1/2. 

Proof. We use a general approach to the calculation of the large-n 
limit of the free energy of spin systems proposed in ref. 2. Namely, consider 
the spherical model with the Hamiltonian 

H;= - - 2 r ,  r 'Jr-r'Xr'Xr'-~ht'xr-'l-r (Xr'Xr--n) (6') 

where xr e N", and the constant z is the solution of the equation 

~ { , V , - I  ~ (x~-x~)/~. ,}=n (6") 
r ~ g  

Evidently. equality (4) will be true if we prove that in the limit n = oo the 
difference E{f.. v - f  s, v} tends to zero uniformly in V. To compare the free 
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energies corresponding to 
intermediate Hamiltonian 
Pr = F/ - -  l X r  " X r ,  

(1) and (6), we introduce, following ref. 2, an 
F(x). In the polar coordinates Xr=Pr'Sr, 

F(x )=H~+n~ (Pr-- 1 ) m r §  (Pr-- | ) 2 §  ~n(mr) 
r r r 

where B is a constant which we shall choose later, 

mr=n I E J z  r, Sr'S~,--n lhr-sr,, J~_r,=Zf~r r , -Jr_r,  ( 7 )  

r' 

(;o ) qOn(mr)= fl l ln  n 1/2 exp{--fl[n(p-1)m~+nB(p-1)2]}p" ~d<p 

The function ~b.(m.) in the expression for F(x) is chosen in such a way that 

f exp[ - f lF (x ) ]  l~ dxr = f exp( - f i l l , )  ~I dar (8) 
r r 

and hence the free energies corresponding to H n and F(x) coincide. 
Simple calculations based on the Jensen and Cauchy inequalities and 

In p ~< p - 1 show that 

-(2fl)-llnn+~_(hr)<~,,(mr)<~(4flB) ln(1-fimr):+g(hr) (9) 

and moreover, 

~{_~(h,)} > C, E{~(k)} ~< r 

where C and C do not depend on V on n. 
Let R=F(x) -H~.  The Bogolubov inequality (19) together with (8) 

imply 

(n [V[)- l (R)r<~fn,  v - f n ,  v<~(rtlV[) I(R)H~ ~ (io) 

In order to estimate ( R } r ,  we note that 

1 
R= - ~  ~ J7 r'(Pl-1)(Pr'- l )sr'sr' + Bn ~ (pr-1) 2+~qSn(mr) 

r, r '  r r 

Thus, if we choose B equal to the/2-norm of the matrix J~_r,, then 

R>~Bn/2~ (Pr-- 1 ) 2 + ~  ~,(mr) ~> ~ @,(mr) 
r r r 
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Hence, 

f n ,  V--J~ s 1 1 . , v~>- (2f ln ) -  lnn+(n]V])-  ~e(h , )  (11) 

~-{f~,v-f~,v} >~ -(2/~n) -1 l n n + n  1_C (12) 

To estimate the rhs of (10) from the above, we need the inequality 

n 2 lIE{ <x~ �9 X~2Xr3 �9 X~),V~ } 

- E {  (x,~, x,2).~} ~z{ <x,~- x,4).s} I ~< n ~C (13) 

~:{(h,) } < +o0. Since B =  HJZll2, we have which may be easily verified, if ~ 4 

R <<. 3Bn/2 ~. (Pr - 1) 2 + ~ q~n(mr) 
r r 

and (9) implies 

~{(nlVl) '<R><}~3B/(ZlVI)~ E{<(pr--1)2>m~} 
r 

+ ( 4 f l l V [ B ) - t ~ E { < ( 1 - f l m r ) 2 ) < } + n - ' C  (14) 
r 

Let us recall that z is the solution of (6") and p ,=n- txr 'Xr  . Thus, by 
using the inequality ( p - 1 ) 2 ~ < ( p 2  1)2 which is obvious if p > 0 ,  and 
factorizing the average E{ <. )} by (13), we obtain 

IVl 'ZE{<(p. -1)2)<}<<.n-aC 
r 

In order to estimate the second term on the rhs of (14), we use the 
definition of rn~: 

[ 12 (1-flm,)2<,2 1 -Bn  l~J j_r ,X~.Xr , - f ln- lh~.x  ~ 
r '  

+4B2n -2 J~r_~,(p~o~,-1)s,'s~, +4[B(1-p~)(h,'s~)/n] 2 

Let us denote the average f{ <. ) ~ }  of the three terms on the rhs of the 
later inequality by I~, i =  1, 2, 3, respectively. In view of the identity 

fl (~r JZ_r, Xr'Xr,--hr'Xr~ =nS._r, 
/ a~. 
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we have 

{/E z . ~ 1 ( 1 5 )  I I = E  f ln-iEJr_,Xr Xr, -h r .  x ~ - -  

Now, by using (13), we get I~ <n-lC. We estimate 12~ and I~ in a similar 
way. Therefore, 

E{(nIVI)-X(R)<} <.n-~O 

and by inequality (10), 

n -~_C - (2fln)-~ inn <~ E{f,, v -  f,[ v} <~ n 'C (16) 

where C and C do not depend on V. The theorem is proved. 

, 

of an n-vector ferromagnet with random uniaxial anisotropy. 

T h e o r e m  2. Let us suppose that Z r ~ d J r < O O .  Then, the free 
energy fn, v corresponding to the Hamiltonian 

1 ( 1 7 )  S n =  --2 E Sr--r 'Sr 'Sr ' - -n-- lE ( D r ' s A 2 - h E E s :  
r,r' r r c~ 

In this section section we find the large-n limit of the free energy 

satisfies the equality 

lim lim E{fn, v }=  lira min max Fv(z,c) (18) 
n ~ o o  I V l ~ o o  I V I ~  c c ~  z > Y ( O }  

where 

The 

1 h 2 
Fv(z, - -  Y, ln[z-J(p)]  

c)=2lVlflp~V. 2 [ z -  J(0)]  2 

( 20 -2 1 )) 1 ln2r~ 
+c 2 E _}(p  -~-~ - -  ( 1 9 )  

p e  V* Z 

proof of the theorem is based on the observation that in the 
large-n limit, random uniaxial anisotropy may be replaced by an "effective" 
external field. Here is the corresponding statement. 

L e m m a .  Let f,.v be the free energy of model (17) and f~v be the 
free energy corresponding to the Hamiltonian 

H~,=H~+n 1 ~ (D~ . s~ -  nat)2 
r 

! E =2r,  r ' J r - r ' s r ~  (h+ 2aro~)S~ +n E ~ r (20) 



Large-n Limit of Heisenberg Model 29 

in which ar are real. Then 

0 ~< min f~ ' ,v-L,  v<~ [2a2/(fln)] 1/2 
a ~  ~ l  vl 

Proof. We use the well-known approximating Hamiltonians 
method (2~ in the form proposed in ref. 21. Denote 

H~(e) = H 2 + Y" e~D~" s~, H.(~) = H. + ~ erDr" s~ 
r r 

According the Bogolubov inequality, (19) for H~(e) and H,(e), we have 

(n2 ] V]) -1 ~ < (D~ " s . -  na~) 2 >/~.(~) ~<f,~a V(e) __ f., V(e) 
r 

~< (n21Vl)-I ~ < (Dr. S r  __  nat)2 >i~o(~) 
r 

Hence, 

0~< min fav(g)--fn, v(g)~(n2]V])-i Z ((D~'s~-(Dr s~) 2 �9 ) )..(~) 
a E R[VI n ,  

r 

Denote the minimum point of the lhs of the latter inequality by a(e). Then 

02f.,v(e) 
f~(v)(e)<~f~,v(~)--(fln)-i ~ c~g2r 

r 

Multiply this inequality by the Green function of the operator 
I -  (fin) -1 Zr~ v ~72/&2, and the equation 

02G(e) 

r 

which holds for G(e), by f,,v(e). Subtract the second obtained expressed 
from the first one and integrate the difference. Since 

f f,,,v(e) tJ  -~7 / l l & r  =o 
&r 2 Ogr J r 

we get the inequality 

f,,v=L,v(e)j~=o>>- f G(e) f~(~.) V[ de~ 
r 
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Hence, 

_< �9 a v ~< f~(~ --f G(~)f~(~ ) [I dG 0-.: mln f" v-f~,  
a ~ l V I  " r 

< f G ( ~ ) [ f : ( v  O0)(E) -- f:(i~)(~)] ~ dEr 
r 

~< f G(e)II~tl ][grad 72~)lt I1 d~r 
r 

Now, by using the inequality 

iLgrad f~(~)Li2 < (nlVl)-2 ~ < D r ,  2 sr ) H.(~) < o2 I VI--1 
r 

we obtain 

0~< min f/,~,v-f~,v 
a ~ [R IVI 

<lVI-'/2o f G(~) I1~11 I-I d~r 
r 

I 0"2 ~2G(e) 2 
~< IVI 1~2f G(e)11~llRHr dG]l/2-nfl]V 1 ~, f --~2r G, I) dG 

(20.2~ 1/2 

<~\ fln J 
The lemma is proved. 

Since the "effective" external field h er= 2arDr is inhomogeneous, we 
cannot apply directly the results of the preceding section to prove 
Theorem 2. We need the following arguments. In view of the inequality 

E{ min fay} ~<min E{f~avj~,=c} 
a c  NIP] ' c e N  

inequality (16) and the lemma yield 

[{f., v} ~< min max Fv(z, c) + O(1/n) 
c e R  z > Y(0) 

where Fv(z, c) is defined by (19). 
On the other hand, 

min fff v = rain f~ v 
a~[~ l  V] ' a t [  a , a ]  IV] ' 
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Let us fix a e  [ -0 - ,  0-]lvl and construct the spherical counterpart of the 
Hamiltonian (20) [cf. (6'), (6")], 

1 Z 2 
H n  's':" ---2 E Jr r ' X r ' X r ' - - ~  (h+ 2a,D~)x~ + ~  ( X r ' X r - - r l ) - k - r l E  a r 

r, r' r c~ r 

Here z is the solution of the equation 

E x , ' x ,  <., =1 

or 

1 E - - ' + ' 1  20"2 ~v 1 1 h 2 
IVI, ,~v.z-Y(p)  - ~ , ,  [z-Y(p)]2lvl  z a ~ + - - 1  (21) 

�9 , z - Y ( o )  

It is easy to see that for H,~ 's the inequality (11) still holds and moreover 
for the external field h~=h+2arD~ the constants e, may be chosen 
nonrandom and independent either of r or of a e [ -0 - ,  o-]l vl. Therefore, 

,v~'j,,,v+O 

Denote the difference f ,~ '~-  F{f~?r by Af Simple calculations show that 

_<1__1_ E 1 1 ~ 0.2(5r _ n_ i E D~ D;, 
fAfl~lVi p~v.z -Y(p) IVf  ,, ~, 

20 -2 ,_., 

+>75 
and 

20 -4 2a 2 
[E{ I J f l }  ~< + - -  

nl/2[z_ y(o)] n i/2 

Since z is the solution of (21), we have z-J(O) >~ Ih] and hence ~{IAfl } 
C/n i/:. Thus, 

E{/;~ v} > </~7,;,} _ < a / }  + o 7 -  > qUa,>} + o 

The latter inequality and the lemma imply in turn that 

E{f~,v} ~> min E{f~,v}+O - -  
a~ [-~r,a]!~ 

822/62/1-2-3 
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But we have 

rain E~ ,~a's~ lim max Fv z, 
a~[__~ ,a ] lV i  LJn, gJ ~aE[  tr,~x]lvI z > J ( O )  ~ - ~  0~ 

where Fv(z, c) is defined by (19). Therefore, 

E{f"'v} ~> mincr ~>J(o,max F v ( z , c ) + o ( l - ~ )  

Theorem 2 is proved. 
By using this theorem, one can easily find the large-n limit of the free 

energy of model (ii). We omit the simple calculations and give only the 
final result. Denote the critical temperature of the translationally invariant 
spherical model by To [-see Eq. (5)], and let fs  be the free energy of the 
model, i.e. 

f s =  max F~ 
z/> Y(O) 

where 

1 f ln[z-J(p)]  dp z 1 2re (22) 
F~ Eo,2,1~ (2r0 a 2 2 f l ln f l  

The minimum with respect to c in (18) is at c = 0  and the large-n limit of 
the free energy of model (ii) coincides with f s  for all temperatures if o- ~< ac, 
where a c =  (kTo/2) 1/2, and for sufficiently large temperatures (kT> 2a 2) if 
a > fie, i.e., 

lim lim {f~,v} = f  E s 
n ~ o o  [VI ~ oo 

Hence, in the large-n limit, the ferromagnetic order is stable against the 
switching on of random anisotropy. 

If o '>ac  and kT<2a 2, the above-mentioned minimum is reached at 
c = c*, and 

lim lim E{f~,v}=F~ *) 
n ~  IVI ~ oo 

where F~ is defined by (22), and z* is the solution of the equation 

f 1 dp 2tr 2 
3Eo,2~ z - Y(p) (27r) d 
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Thus, if cr > ac, the phase t ransi t ion to the low-temperature phase D 

occurs under  the temperature  Tc = 2a 2. In  this phase, which exists in a 
space of an arbi t rary d imens ion  d, the spins are frozen along the anisotropy 

local axes Dr. Here we do not  discuss the quest ion of the convergence of 
q 1 ( D r ' s t )  to the parameter  c*. This will be done elsewhere. Note,  
however, that a r andom external field eD r with an arbitrari ly small 
destroys the above transit ion.  Besides, according to ref. 17, the same phase 

t ransi t ion takes place in the large-n limit of a system of nonin terac t ing  
spins [ H =  - Z r c  v (Or*Sr)2],  in which there are no phase transi t ions in 
this case if n is finite. 
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